Deployment Plans Toward 5G Implementation

Akira Matsunaga
Acting Chair, Technical Committee, 5GMF
KDDI Corporation
Table of Contents

1. Network Configuration

2. Frequency Bands Utilization
Ph.1 WI: NSA(Non-Standalone) will be standardized in advance (1)

- Early 5G deployment may be possible by EPC-based NSA.
- 3GPP RAN meeting in March 2017 agreed to standardize NSA in advance to SA.

<table>
<thead>
<tr>
<th>Study Item</th>
<th>Phase I Work Item</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>Rel.14</td>
<td>Rel.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expedite by 6 months</td>
</tr>
<tr>
<td>March</td>
<td>December</td>
<td>June</td>
</tr>
</tbody>
</table>

- Early 5G deployment may be possible by EPC-based NSA.
- 3GPP RAN meeting in March 2017 agreed to standardize NSA in advance to SA.

EPC based Arch.

- NSA(Non-Standalone) Arch. based on EPC

Standalone Arch.

- SA(Standalone) Arch. Based on 5G Core

Copyright © 2017 KDDI Corporation. All Rights Reserved
Comparison between NSA and SA

<table>
<thead>
<tr>
<th>NSA</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to both LTE and 5G mandatory</td>
<td>Can work by 5G alone (LTE not necessary)</td>
</tr>
<tr>
<td>Control (Location Registration)</td>
<td>5G will be used for both U-Plane and C-Plane</td>
</tr>
<tr>
<td>5G will be focused on U-Plane alone, while LTE is used for control including call origination/termination, location registration, etc.</td>
<td>5G radio control parameters can be exchanged through 5G.</td>
</tr>
<tr>
<td>5G radio control parameters</td>
<td>5G radio control parameters will be exchanged through LTE. For that purpose, functions should be added to eNB.</td>
</tr>
<tr>
<td>Paging Channels</td>
<td>UE monitors paging channels on 5G.</td>
</tr>
<tr>
<td>UE monitors paging channels on LTE.</td>
<td></td>
</tr>
</tbody>
</table>
5G Deployment Scenarios

- Multiple architectures are under study at 3GPP, according to different 5G deployment scenarios of each administration.
- Multiple architecture options available depending on different combinations of Core (EPC, 5G Core) x SA (LTE, 5G) x NSA (LTE Anchor, 5G Anchor)
Example of Migration from 4G to 5G

EPC-based core configuration will be standardized in Rel.15 NSA while 5G core will be standardized in Rel.15.

EPC(4G)-based NW config. (Opt.3)

The Internet

EPC

LTE eNB

5G gNB (NSA)

5G UE

5G core-based NW config. (Opt.7)

The Internet

EPC

LTE eNB

5G gNB (NSA)

5G gNB (SA)

5G UE

5G UE
Example of 5G Roadmap based on Standardization Schedule

- **eMBB**
- **IoT**
- **URLLC**

Video Transmission
- eMTC
- NB-IoT
- Low Lat. in Radio

Surveillance Camera
- eMTC
- NB-IoT

Connected Car

FY 2020~
- NSA
- 28GHz
- Below6GHz
- 4G
- Existing 4G Bands
- eMBB scenario will be supported

FY 2022~
- NSA
- 28GHz
- Below6GHz
- 4G
- Existing 4G Bands
- eMBB scenario will be supported

FY 202X~
- NSA
- SA
- 28GHz
- Below6GHz
- 4G
- Existing 4G Bands
- eMBB scenario will be supported

Copyright © 2017 KDDI Corporation. All Rights Reserved
Example of Frequency Bands Usage

Several frequency bands will be used separately or jointly depending on the characteristics of the bands and use cases.

Area Coverage
- LTE (800 MHz etc.)
- Below 6 GHz (New RAT)
- IoT (Massive MTC)

Uplink/Downlink
- 28 GHz (New RAT)
 - eMBB, URLLC
- Surveillance Camera
- Connected Car (Dynamic Map)
- Stadium

IoT (Massive MTC)

Copyright © 2017 KDDI Corporation. All Rights Reserved
Illustrative Frequency bands utilization and 5G use cases

Appropriate frequency bands will be chosen depending on needs and services.

Examples of use cases for better society

Areas

- Urban
- Suburb
- Rural

5G Bands

Maintain continuity and quality by interworking (Dual Connectivity)

28GHz

5G (28GHz帯)

5G(Below6GHz)

3GPP Bands

LTE

LTE/LTE-A

Copyright © 2017 KDDI Corporation. All Rights Reserved
5G bands (Below 6GHz, Above 6GHz (ex: 28GHz)) should be used in combination with 4G to complement each other, taking into account the following factors:

- Requirement of use cases (Mobility, Area, Latency, etc.)
- Separation of C-Plane and U-Plane
- Standalone, Non-Standalone scenarios
Importance of Multi-sites and Multi-bands technologies

- In order to compensate the blocking effect in higher frequency bands (ex: 28GHz), multi sites technologies (CoMP etc.) employing multiple base stations are important.
- Interwork with 4G frequency bands (Dual Connectivity, etc.) is also essential.

* Coordinated Multiple Point transmission/reception